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Abstract. Resonant quantum tunneling of the Néel vector between nonequivalent magnetic wells is inves-
tigated theoretically for a nanometer-scale single-domain antiferromagnet with biaxial crystal symmetry in
the presence of an external magnetic field applied along the easy anisotropy axis, based on the two-sublattice
model. Both the Wentzel-Kramers-Brillouin exponent and the preexponential factors are evaluated in the
instanton contribution to the tunneling rate for finite and zero magnetic fields by applying the instanton
technique in the spin-coherent-state path-integral representation, respectively. The quantum interference
or spin-parity effects induced by the topological phase term in the Euclidean action are discussed in the
rate of quantum tunneling of the Néel vector. In the absence of an external applied magnetic field, the
effect of destructive phase interference or topological quenching on resonant quantum tunneling of the Néel
vector is evident for the half-integer excess spin antiferromagnetic nanoparticle. In the weak field limit, the
tunneling rates are found to oscillate with the external applied magnetic field for both integer and half-
integer excess spins. We discuss the experimental condition on the applied magnetic field which may allow
one to observe the topological quenching effect for nanometer-scale single-domain antiferromagnets with
half-integer excess spins. Tunneling behavior in resonant quantum tunneling of the magnetization vector
between nonequivalent magnetic wells is also studied for a nanometer-scale single-domain ferromagnet by
applying the similar technique, but in the large noncompensation limit.

PACS. 03.65.Bz Foundations, theory of measurement, miscellaneous theories (including Aharonov-Bohm
effect, Bell inequalities, Berry’s phase) – 75.45.+j Macroscopic quantum phenomena in magnetic systems
– 75.50.Ee Antiferromagnetics

1 Introduction

Macroscopic quantum phenomena (MQP) have been given
extensive investigation from both experimental and the-
oretical aspects for more than one decade since the pi-
oneering work of Calderia and Leggett [1,2]. Calderia
and Leggett predicted that quantum tunneling in the
macroscopic domain was theoretically possible, provided
that the dissipation resulting from the interaction of
the macroscopic system with the environment is small
enough at sufficiently low temperatures [1,2]. They pre-
sented a formalism which could incorporate the dissipa-
tion by applying the imaginary-time path integral and the
standard instanton technique, and they concluded that
the rate of quantum tunneling was reduced by dissipa-
tion in general [1–4]. The Calderia-Leggett approach has
been considered extensively in systems of Josephson junc-
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tions [5–7] and superconducting quantum interference de-
vices (SQUIDS) [8], where the macroscopic degree of the
freedom is the difference between the phases of the con-
densates of Cooper pairs in the superconductors on either
side of the tunneling barrier.

In recent years, owing mainly to the rapid advances
both in new technologies of miniaturization and in highly
sensitive SQUID magnetometry, there have been consid-
erable theoretical and experimental studies carried out
on the nanometer-scale magnetic systems which exhibit
macroscopic quantum coherence (MQC) and macroscopic
quantum tunneling (MQT). For a single-domain ferromag-
netic (FM) nanoparticle at sufficiently low temperatures,
all the spins are locked together by the strong exchange
interaction, and therefore only the orientation of the to-
tal magnetization vector can change but not its absolute
value (Stoner-Wohlfart model). The energy of a single-
domain FM nanoparticle depends on the orientation of
the total magnetization vector. In such a single-domain
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FM nanoparticle, the magnetocrystalline anisotropy and
the external applied magnetic field can create easy direc-
tions for the total magnetization vector which correspond
to local minima of magnetic energy. In the phenomenon of
MQC, the magnetization vector resonates coherently be-
tween the energetically degenerate easy directions in the
absence of an external applied magnetic field, thus, MQC
occurs when all the spins coherently oscillate back and
forth between two equivalent wells separated by a clas-
sically impenetrable barrier. However, the ground-state
tunneling level splittings of single-domain FM nanopar-
ticles are too small to be observed without controlling the
height and the width of the barrier formed by the mag-
netocrystalline anisotropy energy at zero magnetic field.
It has been believed that an applied magnetic field is a
good external parameter to make the phenomena of MQT
and MQC observable. By applying an external magnetic
field at a proper direction to the easy anisotropy axis, one
of the two energetically equivalent orientations becomes
metastable and the magnetization vector can escape from
the metastable state through the classically impenetrable
barrier to a stable one (i.e., MQT). Applications of the
phenomena of MQT and MQC have been discussed in the
reliability of small magnetic units in memory devices, and
in quantum computers [32,33]. The phenomena of MQT
and MQC will be crucial for future magnetic devices work-
ing on a nanometer-scale. Notable examples of the mag-
netic MQP are quantum tunneling of the magnetization
vector in single-domain FM nanoparticles [9–11], quantum
nucleation of the FM bubbles [12] and quantum depinning
of FM domain walls from defects in bulk ferromagnets at
sufficiently low temperatures [13–15]. A number of exper-
iments [16–19] involving resonance measurements, mag-
netic relaxation and hysteresis loop studies have shown
either temperature-independent relaxation phenomena or
a well-defined resonance depending exponentially on the
number of total spins of magnets, which strongly support
the idea of quantum magnetic tunneling.

It has been pointed out that the single-domain anti-
ferromagnetic (AFM) nanoparticle, which has a nonzero
magnetization moment due to the small noncompensa-
tion of two sublattices, is a better candidate for observ-
ing the phenomena of MQT and MQC, compared with
the single-domain FM nanoparticle of a similar size. To
see this, note that for such quantum tunneling prob-
lems, the difference between the single-domain FM and
AFM nanoparticles originates from the configurations of
spins in the classical states. The spins remain exactly
parallel in the single-domain ferromagnet. But in the
single-domain antiferromagnet, the spins in two sublat-
tices are tipped with respect to one another. The effect
of the canting of the AFM spins in the barrier state
is that the torques on them are much stronger than in
the FM case. Thus, the resonance frequency in one of
the wells separated by magnetocrystalline anisotropies or
external applied magnetic fields is much larger in the
single-domain AFM particle than in the FM case (we
give a formula for these in the following calculation).
As the rate of quantum tunneling Γ ∝ exp(−U/~ωp),
where U is the magnetic barrier between two wells and

ωp is the small-angle precession or resonance frequency
in the well, the rate of quantum tunneling in single-
domain AFM nanoparticles is much larger than that in
single-domain FM nanoparticles of a comparable size.
This makes the nanometer-scale single-domain antiferro-
magnets more interesting for experimental studies. By
applying a fully integrated thin-film dc-SQUID micro-
susceptometer, Awschalom et al. [19] have made low-
temperature measurements of the frequency-dependent
magnetic noise S(ω) and magnetic susceptibility χ(ω)
on nanometer-scale horse-spleen ferritin particle, a nat-
urally occurring, antiferromagnetic, iron storage protein.
These proteins contain a 7.5-nm-dim magnetic core with
about 4 500 Fe3+ spin 5/2 ions below 200 mK. Although
the ferritin particles are basically antiferromagnetic, they
have a small uncompensated moment which allows one
to probe their dynamics by measuring S(ω) and χ(ω).
Awschalom et al. have observed a well-defined resonance
below roughly 200 mK in both S(ω) and the imaginary
part, χ′′(ω), of χ(ω), which can be interpreted as a mani-
festation of resonant quantum tunneling of the Néel vector
between energetically degenerate easy directions in the ab-
sence of an external magnetic field. And the frequency of
this resonance was found to be 2 000 times higher than
that of nanometer-scale ferromagnets [16]. The phenom-
ena of MQT and MQC of the Néel vector were investi-
gated theoretically for the single-domain AFM nanoparti-
cles based on the two-sublattice model [20,21,23,24] and
the anisotropic σ model [22] independently. And the phe-
nomenon of MQT is also very important in the prob-
lems of quantum nucleation of the AFM bubbles [22,23]
and quantum depinning of the domain walls from de-
fects in bulk antiferromagnets at sufficiently low temper-
atures [20].

One of the most striking effects in the magnetic MQP
is that for some spin systems with high symmetries, the
behaviors of quantum tunneling of the magnetization vec-
tor seem sensitive to the parity of total spin of the single-
domain magnet. It has been theoretically demonstrated
that the ground-state tunneling level splitting is com-
pletely suppressed to zero for the half-integer total spin
FM nanoparticles with biaxial crystal symmetry in the
absence of an external applied magnetic field, resulting
from the destructive interference of the Berry phase or
the Wess-Zumino, Chern-Simons term in the magnetic ac-
tion between the symmetry-related tunneling paths con-
necting two classically degenerate minima [25,26]. Such a
destructive phase interference effect for the single-domain
FM nanoparticles with half-integer total spins is known
as the topological quenching [27]. But for integer total
spin FM nanoparticles, the quantum phase interference
between topologically different tunneling paths is con-
structive, and therefore the ground-state tunneling level
splitting is nonzero. A similar topological phase interfer-
ence or spin-parity effect has been found theoretically in
the single-domain AFM nanoparticle with biaxial crys-
tal symmetry in the absence of an external applied mag-
netic field, in which only an integer excess spin AFM
particle can tunnel coherently between energetically de-
generate easy directions, but not a half-integer excess
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spin one [21,22]. Similar effects have been observed in
one-dimensional antiferromagnetic Heisenberg spin chains
where the ground state has a finite gap (Haldane gap [38])
in spin excitation for integer spin, while such gaps are
suppressed to zero for half-integer spin, resulting from the
destructive interference of topological Berry phases [39].
However, these topological phase interference effects are
intrinsically absent in the Josephson-junction-based su-
perconducting systems [4–8], which makes quantum tun-
neling phenomena in nanometer-scale single-domain mag-
nets more important for understanding the foundations of
quantum mechanics. Theoretical studies have shown that
the destructive phase interference or topological quench-
ing effect in magnetization tunneling could also be un-
related to the Kramers’ degeneracy in the FM [27] and
AFM [28] spin systems, where an external magnetic field
is applied at a right angle to break the time-reversal in-
variance of the systems. Recently, the topological phase
interference effect in resonant quantum tunneling of the
magnetization vector between nonequivalent wells formed
by the external applied magnetic field has been studied ex-
tensively in the single-domain FM nanoparticles [29,30].
Motivated by the theoretical works on single-domain FM
nanoparticles [29,30], in the present work we will study
the spin-parity or topological phase interference effects
in the resonant quantum tunneling of the Néel vector
between nonequivalent wells in the single-domain AFM
nanoparticles with biaxial crystal symmetry in the pres-
ence of an external magnetic field applied along the easy
anisotropy axis of the system, opposite to the direction
of the Néel vector. Besides its importance in the phe-
nomena of MQT and MQC in magnets from the funda-
mental point of view [31], the quantum interference ef-
fects induced by the topological phase coherence between
symmetry-related tunneling paths are found to be poten-
tially important in the designing of quantum computers in
the future [32,33]. One recent experimental method based
on the Landau-Zener model was developed by Wernsdor-
fer and Sessoli [40] to measure very small tunneling split-
tings on the order of 10−8 K in an octanuclear iron(III)
oxo-hydroxo cluster of formula [Fe8O2 (OH)12 (tacn)6]8+,
Fe8, where tacn is the organic ligand triazacyclononane.
At sufficiently low temperatures, the molecular Fe8 clus-
ter behaves like a nanomagnet with a spin ground state
of S = 10, which arises from competing antiferromag-
netic interactions between the eight S = 5/2 iron spins.
Wernsdorfer and Sessoli have observed a very clear os-
cillation of the tunneling splitting as a function of the
magnetic field applied along the hard anisotropy axis,
which is direct evidence of the role of the topological
spin phase (Berry phase) in the spin dynamics of these
molecules.

The purpose of the present work is to investigate the-
oretically the topological phase interference or spin-parity
effects in resonant quantum tunneling of the Néel vec-
tor between nonequivalent wells separated by the mag-
netocrystalline anisotropy and the external applied mag-
netic field in a single-domain AFM nanoparticle with bi-
axial crystal symmetry at sufficiently low temperatures,
based on the two-sublattice model. The phenomenon of

MQT in the single-domain AFM nanoparticle corresponds
to the escape of the Néel vector through the classically
impenetrable barrier from a metastable state (i.e., the
local minimum of the magnetic energy) to a stable one
by quantum tunneling. The simplest way to obtain the
metastable state is to apply an external magnetic field
at right angles to the easy anisotropy axis of the sys-
tem. In the present work, the external magnetic field is
assumed to be applied along the easy anisotropy axis of
the system, opposite to the direction of the Néel vec-
tor, which creates the nonequivalent wells in the basal
plane. Both the Wentzel-Kramers-Brillouin (WKB) ex-
ponent and the preexponential factors are evaluated in
the instanton contribution to the rate of quantum tun-
neling of the Néel vector for the entire region of the ex-
ternal magnetic field (0 ≤ H < Hc) by applying of the
standard instanton technique in the spin-coherent-state
path-integral representation [11,24,35–37], where Hc is
the coercive field. The oscillation of the WKB tunneling
rate with the external applied magnetic field is clearly
shown, and the experimental condition of the applied mag-
netic field is suggested for observing the destructive phase
interference or topological quenching effect in nanometer-
scale single-domain antiferromagnets with half-integer ex-
cess spins. It is noted that in reference [28], the tunneling
behaviors have been studied in resonant quantum tun-
neling of the Néel vector between energetically equivalent
wells separated by the external magnetic field along the
hard anisotropy axis of the system (compared with the
easy anisotropy axis in this paper). The results show that
the tunneling properties of the Néel vector between equiv-
alent wells [28] are significantly different from those of the
Néel vector between nonequivalent wells considered in the
present work. Note that the calculation of tunneling rate
for the nanometer-scale single-domain antiferromagnet is
performed in the small noncompensation limit, at which
the excess spin of the single-domain AFM nanoparticle
owing to the noncompensation of two sublattices is much
smaller than the sublattice spin. And it is easy to obtain
the topological phase interference or spin-parity effects in
resonant quantum tunneling of the magnetization vector
between nonequivalent wells for nanometer-scale single-
domain ferromagnets with biaxial crystal symmetry in the
presence of an external magnetic field applied along the
easy anisotropy axis by making use of the similar tech-
nique, but in the large noncompensation limit.

The system of interest is a single-domain AFM na-
noparticle of about 5 nm in radius at a temperature
well below its anisotropy gap. Let us assume a simple
two-sublattice AFM particle, and denote the sublattices
by 1 and 2 respectively. According to the two-sublattice
model [20], there is a strong exchange energy m1 ·m2/χ⊥
between two sublattices, where m1 and m2 are the magne-
tization vectors of two sublattices with large, fixed and un-
equal magnitudes, and χ⊥ is the transverse susceptibility.
Under the assumption that the exchange energy between
two sublattices is much larger than the magnetocrystalline
anisotropy energy and the Zeeman energy when an ex-
ternal magnetic field is applied, the Euclidean action for
the small noncompensated AFM nanoparticle (neglecting
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the dissipation with the environment) is given by [20]

SE[θ(x, τ), φ(x, τ)] =
1
~

∫
dτ
∫

d3x

{
i
m1 +m2

γ

(
∂φ

∂τ

)

+
χ⊥
2γ2

[(
∂θ

∂τ

)2

+
(
∂φ

∂τ

)2

sin2 θ

]

+
1
2
α
[
(∇θ)2 + (∇φ)2 sin2 θ

]
+E(θ, φ)

}
, (1)

where γ is the gyromagnetic ratio, τ = it is the imagi-
nary time, and α is the exchange constant. We assume
that m1 > m2 and m = m1 − m2 � m1. The E(θ, φ)
term in the above equation includes the magnetocrys-
talline anisotropy and the Zeeman energies. The polar
coordinate θ and the azimuthal coordinate φ, which are
the angular components of m1 in the spherical coordi-
nate system, determine the direction of the Néel vector in
single-domain AFM nanoparticle.

As pointed out in reference [20], for a nanometer-scale
single-domain antiferromagnet, the Néel vector may de-
pend on the imaginary time but not on coordinates be-
cause spatial derivatives in equation (1) are suppressed
by the strong exchange interaction between two sublat-
tices (m1 ·m2/χ⊥). The spatial derivatives in equation (1)
are important in the problems of quantum tunneling in
nonuniform magnetic structure, such as quantum nucle-
ation in a thin film or quantum depinning of domain wall
in bulk magnets at sufficiently low temperatures. So all the
calculations performed in the present work are for the case
of the homogeneous Néel vector. Therefore, equation (1)
reduces to

SE(θ, φ) =
V

~

∫
dτ

{
i
m1 +m2

γ

(
dφ
dτ

)

+
χ⊥
2γ2

[(
dθ
dτ

)2

+
(

dφ
dτ

)2

sin2 θ

]
+E(θ, φ)

}
, (2)

where V is the volume of the single-domain AFM
nanoparticle.

In the spin-coherent-state representation, the m1 state
can be characterized by the angles θ and φ as

|θ, φ〉 =
(

cos
θ

2

)2S

exp
(

tan
θ

2
eiφŜ−

)
|S〉. (3)

The spin coherent state is defined as the maximum eigen-
state of Ŝz , rotated into the direction of the unit vector
n = (sin θ cosφ, sin θ sinφ, cos θ). Compared with the FM
case in reference [29], now S = m1V/~γ is the total spin
in one sublattice for the single-domain AFM nanoparticle.
Ŝ− = Ŝx− iŜy, and |S〉 is the eigenstate of Ŝz correspond-
ing to the maximal eigenvalue Sz = S.

The system is supposed to have an easy anisotropy
axis along x and an easy plane in the x− y plane. In the
presence of an external magnetic field H applied along the

easy x axis, opposite to the direction of the Néel vector,
the E(θ, φ) term in equation (2) can be expressed as

E(θ, φ) = K⊥ cos2 θ +K‖ sin2 θ sin2 φ

−mH(1− sin θ cosφ), (4)

where K⊥ and K‖ are the transverse and longitudinal
anisotropy coefficients respectively. Like the problem con-
sidered in reference [20], in the present work we also as-
sume that the transverse anisotropy coefficient is much
larger than the longitudinal one, which agrees with the ex-
perimental situation for highly anisotropic materials (such
as rare-earth materials).

When H 6= 0, there is a metastable state at θ = π/2,
φ = 0 (i.e., the Néel vector antiparallel to the external
applied magnetic field) and a stable state at θ = π/2,
φ = π (i.e., the Néel vector parallel to the external ap-
plied magnetic field). The energy maximum of the sys-
tem corresponds to θ = π/2 and cosφ1 = H/Hc, where
Hc = 2K‖/m. Hc is the coercive field at which the ini-
tial state becomes classically unstable. It is noted that
there also exists a spin-flop field for single-domain AFM
nanoparticles at finite magnetic field, Hs.f., which can
rotate the magnetization moments of sublattices away
from the anisotropy axis. The spin-flop field is defined as
Hs.f. =

√
2H‖Hex, with H‖ = 2K‖/m1 being the longi-

tudinal anisotropy field, and Hex = J/m1 being the ex-
change field between sublattices, where J is the exchange
energy density between two sublattices. Therefore, the ac-
tual applied field must be the smallest of these two fields,
where the two-sublattice configuration is still valid for
single-domain AFM nanoparticles at finite magnetic field.

To decay out of the metastable state, the Néel vector
must rotate by the angle ±φ2, which satisfies

sin2

(
φ2

2

)
= ε, (5)

where ε = 1−H/Hc. Now the problem is one of resonant
MQT, i.e., the escaping of the Néel vector through the
magnetic barrier by quantum tunneling from the initial
Ψ0 level to the excited Ψr level which is in resonance with
Ψ0 at finite magnetic field.

The amplitude of such resonant quantum transition is
given by the imaginary-time propagator

A = 〈Ψ0|e−HT |Ψr〉. (6)

In the semiclassical approximation, the Ψ0 state is very
close to |π/2, 0〉. Then the above equation reduces to

A ≈ 〈π/2, 0| e−HT |π/2,−φ2〉 〈π/2,−φ2|Ψr〉
+ 〈π/2, 0| e−HT |π/2, φ2〉 〈π/2, φ2|Ψr〉. (7)

In the limit that T →∞, the propagator

〈π/2, 0|e−HT |π/2, φ2〉 → exp [i (2S − s)φ2] exp (−E0T ) ,

where E0 is the energy of the metastable state Ψ0.
S = m1V/~γ is the total spin in one sublattice,
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s = mV/~γ is the excess spin of single-domain AFM
nanoparticle owing to the small noncompensation of two
sublattices (s� S). Since the state Ψ0 is unstable, E0

will have an imaginary part, which is related to the de-
cay rate Γ by the usual formula: Γ = −2=E0 [11,35–37].
Therefore, the propagator 〈π/2, 0|e−HT |π/2, φ2〉 becomes
exp [i (2S − s)φ2] exp (−~ωpT/2) exp (iΓT/2), where ωp is
the oscillation frequency in the well.

The propagators 〈π/2, 0|e−HT |π/2,±φ2〉 in equa-
tion (7) are equivalent to the following imaginary-time
path integral in the spin-coherent-state representation,∫

D{θ}D{φ} exp[−SE(θ, φ)], (8)

over the classical trajectories connecting the initial
state |π/2, 0〉 and the final states |π/2,±φ2〉, where the
Euclidean action SE(θ, φ) has been defined in equa-
tion (2). Now the calculation of the WKB escaping
rate for this resonant quantum tunneling problem con-
sists of two major steps. The first step is to evalu-
ate the propagators 〈π/2, 0|e−HT |π/2,±φ2〉. This can
be performed with the help of the standard instan-
ton technique in the spin-coherent-state path-integral
representation [11,24,35–37]. The second step is to cal-
culate the overlap factors 〈π/2,±φ2|Ψr〉. In reference [24],
Lü et al. have investigated the general formulas for cal-
culating both the WKB exponent and the preexponen-
tial factors in the tunneling rate Γ (in MQT problems)
or the tunneling level splitting ∆ (in MQC problems) for
nanometer-scale single-domain antiferromagnets based on
the two-sublattice model and the instanton technique in
the spin-coherent-state path-integral representation, with-
out assuming a specific form of the magnetocrystalline
anisotropy and the external magnetic field. In Appendix A
of this paper, we discuss briefly the basic idea of this cal-
culation.

To execute the first step, we must find the classical
path (θ̄, φ̄) which minimizes the Euclidean action SE(θ, φ)
of equation (2). It is noted that the first term in the
Euclidean action of equation (2) is a total imaginary-
time derivative, which has no effect on the classical equa-
tions of motion for the Néel vector in single-domain AFM
nanoparticles, but yields a boundary contribution to the
Euclidean action. However, we will show in the following
that this term, known as the topological phase term, is
of crucial importance to the quantum interference effects
in nanometer-scale single-domain antiferromagnets and
makes the tunneling behaviors of integer and half-integer
excess spins strikingly different. We ignore this topologi-
cal phase interference or spin-parity effect for the moment,
but focus on the evaluation of the instanton’s contribution
to the WKB escaping rate for resonant quantum tunneling
of the Néel vector between nonequivalent magnetic wells
in single-domain AFM nanoparticles with biaxial crystal
symmetry in the presence of an external magnetic field
applied along the easy anisotropy axis. Then we reinstate
the phase factors generated by the topological term in the
Euclidean action in the final expression for the quantum
escaping rate.

The classical path (θ̄, φ̄) obeys the following equa-
tions of motion for the Néel vector in single-domain AFM
nanoparticles (δSE = 0),

χ⊥
γ2

d2θ̄

dτ2
=
χ⊥
γ2

(
dφ̄
dτ

)2

sin θ̄ cos θ̄ +
∂E

∂θ
,

χ⊥
γ2

d
dτ

[(
dφ̄
dτ

)
sin2 θ̄

]
=
∂E

∂φ
· (9)

In the case of very strong transverse anisotropy, the Néel
vector is forced to lie in the x−y plane. Substituting equa-
tion (4) into the classical equations of motion for the Néel
vector in single-domain AFM nanoparticles, we obtain the
instanton solution for 0 < ε < 1,

θ̄ =
π

2
,

sin2

(
φ̄

2

)
=

1− tanh2(ω0
√
ετ)

λ− tanh2(ω0
√
ετ)

, (10)

where λ = 1/ε and ω0 = γ
√

2K‖/χ⊥. The correspond-
ing classical action, i.e., the WKB exponent in the rate of
quantum tunneling at finite magnetic field, can be eval-
uated by integrating the Euclidean action (2) with the
above classical trajectories, and the result is found to be

Scl = 23/2 V

~γ

√
χ⊥K‖

[√
ε− 1

2
(1− ε) ln

(
1 +
√
ε

1−√ε

)]
·

(11)

The preexponential factors in the instanton’s contribution
to the WKB tunneling rate are related to the quantum
fluctuations about the classical path, which can be eval-
uated by expanding the Euclidean action of equation (2)
to second order in small fluctuations [24] (for the detailed
calculation see Appendix A).

After evaluating the preexponential factors due to the
small fluctuations about the classical path, we obtain the
instanton’s contribution to the WKB rate for resonant
quantum tunneling of the Néel vector between nonequiv-
alent wells at finite magnetic field as the following equa-
tion [24],

ΓAFM=
29/4

π1/2

V

~
K⊥

(
K‖J

K2
⊥

)3/4
ε5/4√
1− ε

×
[
1−
(
K‖
K⊥

)(
H

Hc

)]−1/2(1 +
√
ε

1−√ε

)3  
K‖
K⊥

!
( H
Hc )

1−
 
K‖
K⊥

!
( H
Hc )
√
ε

× exp

−4

(
K‖
K⊥

)
1−

(
K‖
K⊥

)(
H
Hc

)ε
S−1/2e−Scl ,

(12)

where S = m1V/~γ is the total spin in one sublattice,
and J

(
= ~2γ2S2/χ⊥V

2
)

is the exchange energy density
between two sublattices.

Suppose the excess spin of the single-domain AFM
nanoparticle is solely due to the small noncompensation
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of two sublattices at the particle surface. It has been ar-
gued [20] that for a single-domain AFM nanoparticle with
N spins, N2/3 spins are at the surface, thus the number
of excess spins due to statistical fluctuations of the par-
ticle shape is about

(
N2/3

)1/2
= N1/3. For a nanometer-

scale single-domain antiferromagnet of about 103 spins,
the number of excess spins would be 10, which is a small
fraction of the N ∼ 103 spins in the particle.

In terms of the exchange energy density J between
two sublattices and the sublattice spin S, the classical
action or the WKB exponent of equation (11) for the small
noncompensated AFM nanoparticle can be rewritten as

Scl = 23/2

√
K‖
J
S

[√
ε− 1

2
(1− ε) ln

(
1 +
√
ε

1−√ε

)]
· (13)

Both the WKB exponent and the preexponential factors
are clearly shown in equations (12, 13) for the entire region
of the magnetic field (0 < H < Hc), which may be helpful
for the experimental investigation of the phenomenon of
resonant quantum tunneling of the Néel vector in single-
domain AFM nanoparticles in the presence of an external
applied magnetic field along the easy anisotropy axis.

It is noted that equations (12, 13) are obtained for
the small noncompensation case, i.e., m �

√
2K⊥χ⊥.

On the other hand for the large noncompensation case,
i.e., m �

√
2K⊥χ⊥, the problem reduces to one of res-

onant quantum tunneling of the magnetization vector in
single-domain FM nanoparticles [29]. However, in refer-
ence [29], the instanton solution, the associated WKB
exponent and the preexponential factors are not clearly
shown in the instanton contribution to the WKB escaping
rate for resonant quantum tunneling of the magnetization
vector between nonequivalent wells for nanometer-scale
single-domain ferromagnets with biaxial crystal symme-
try at finite magnetic field. Here, by applying a technique
similar to that for the single-domain AFM nanoparticle,
we obtain the instanton contribution to the WKB tunnel-
ing rate for the single-domain FM nanoparticle at finite
magnetic field as the following equation,

ΓFM =
8

π1/2

V

~
K⊥

(
K‖
K⊥

)3/4
ε5/4√
1− ε

×
[
1−

(
K‖
K⊥

)(
H

Hc

)]−1/2

× exp
[
−2
(
K‖
K⊥

)
ε

]
(S′)−1/2e−S

′
cl , (14)

where S′ is the total spin of the single-domain FM
nanoparticle. Now Hc = 2K‖/M0 is the coercive field for
the single-domain FM nanoparticle at which the initial
state becomes classically unstable, where M0 = ~γS′/V
is the magnitude of the total magnetization moment. And
the associated classical action S′cl for the single-domain
FM nanoparticle is found to be

S′cl = 2

√
K‖
K⊥

S′
[√

ε− 1
2

(1− ε) ln
(

1 +
√
ε

1−√ε

)]
· (15)

The limiting cases for H → 0 and H → Hc of the
WKB exponent in equation (15) agree exactly with the
results in reference [9]. However, we emphasize that the
above formulas (14, 15) obtained for the single-domain
FM nanoparticle are valid for the entire region of the ex-
ternal magnetic field (0 < H < Hc) applied along the easy
anisotropy axis, opposite to the direction of the magneti-
zation vector. This provides a controllable parameter for
experimental observation of the phenomenon of resonant
quantum tunneling of the magnetization vector in single-
domain FM nanoparticles.

Now we turn to the second step for resonant quantum
tunneling of the Néel vector between nonequivalent wells
in single-domain AFM nanoparticles with biaxial crys-
tal symmetry placed in a magnetic field along the easy
anisotropy axis, i.e., the evaluation of the overlap factors
〈π/2,±φ2|Ψr〉. The excited resonant state |Ψr〉 can be ex-
panded in terms of the eigenstates of Ŝz as

|Ψr〉 =
∑
Sz

aSz (H)|Sz〉. (16)

Due to the symmetry of the system, aSz are either all
even, aSz = a−Sz , or all odd, aSz = −a−Sz , in Sz. With
the help of equation (3), |π/2,±φ2〉 can be expanded as

|π/2,±φ2〉 = e±iφ2S
∑
Sz

e∓iφ2SzbSz |Sz〉, (17)

where

bSz = 2−S
[

(2S)!
(S − Sz)!(S + Sz)!

]1/2

· (18)

It is easy to show that bSz are all even, bSz = b−Sz , in Sz .
All the expansions in equations (16, 17) are performed in
terms of the eigenstates of Sz for the single-domain AFM
nanoparticle, compared with the FM case in reference [29].

After evaluating the overlap factors and combining
all terms in equation (7), we obtain the transition am-
plitude that corresponds to the resonant quantum tran-
sition of the Néel vector through the magnetic barrier
from Ψ0 level to an even-symmetry Ψr level in nanometer-
scale single-domain antiferromagnets as the following
equations [11,35–37],

AAFM = exp (−~ωpT/2) exp (iΓAFMT/2)

× cos [(S − s)φ2]
S∑

m=0

Cm cos (mφ2) , (19)

for an integer S, and

AAFM = exp (−~ωpT/2) exp (iΓAFMT/2)

× cos[(S − s)φ2]
S−1/2∑
m=0

Cm cos
[(
m+

1
2

)
φ2

]
, (20)

for a half-integer S, where ΓAFM is shown in equation (12),
and ωp = ω0

√
ε = (V/~S)

√
2K‖Jε is the oscillation fre-

quency in the well for nanometer-scale single-domain anti-
ferromagnets at finite magnetic field. S is the total spin in
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one sublattice and s is the excess spin of the single-domain
AFM nanoparticle owing to the small noncompensation
of two sublattices (s � S). Here, Cm = kaSzbSz , with
Sz = m for an integer S and Sz = m + 1/2 for a half-
integer S; k = 2 if Sz = 0 and k = 4 for all Sz 6= 0. The
WKB tunneling rate corresponding to the resonant quan-
tum transition of the Néel vector to an odd-symmetry Ψr

level is found to be zero.
It is easy to show that in the large noncompensation

limit, equations (19, 20) reduces to the following equa-
tions for resonant quantum tunneling of the magnetization
vector between nonequivalent magnetic wells for single-
domain FM nanoparticles with biaxial crystal symmetry
in the presence of an external magnetic field applied along
the easy anisotropy axis [11,35–37],

AFM = exp (−~ωpT/2) exp (iΓFMT/2)
S′∑
m=0

Cm cos(mφ2),

(21)

for an integer S′, and

AFM = exp (−~ωpT/2) exp (iΓFMT/2)

×
S′−1/2∑
m=0

Cm cos
[(
m+

1
2

)
φ2

]
, (22)

for a half-integer S′, where ΓFM is shown in equation (14),
ωp = (V/~S)

√
K‖K⊥ε is the oscillation frequency in the

well for nanometer-scale single-domain ferromagnets at fi-
nite magnetic field, and S′ is the total spin of the single-
domain FM nanoparticle. From equation (22), the topo-
logical quenching of resonant quantum tunneling of the
magnetization vector is evident for the half-integer total
spin FM nanoparticle in the absence of an external ap-
plied magnetic field, resulting from the destructive inter-
ference of geometric phase terms in the Euclidean action
between topologically different tunneling paths connect-
ing the same initial and final states. Compared with the
results in reference [29], both the WKB exponent and the
preexponential factors are evaluated exactly in the instan-
ton contribution to the WKB rate for resonant quantum
tunneling of the magnetization vector in a single-domain
FM nanoparticle placed in an external applied magnetic
field along the easy anisotropy axis of the system, opposite
to the direction of the magnetization vector. Compared
with the AFM case in equations (16), (17), and (18), now
the relevant quantity in overlap factors 〈π/2,±φ2|Ψr〉 is
the total spin for the FM particle. Our theoretical results
may be useful in the analysis of further experiments on the
observation of the topological phase interference or spin-
parity effects in resonant quantum tunneling of the mag-
netization vector between nonequivalent magnetic wells in
nanometer-scale single-domain ferromagnets.

When H = 0 (now φ2 = π), the problem is one
of MQC, i.e., the Néel vector resonates coherently be-
tween energetically equivalent wells. In discussing MQP,
it is essential to distinguish between two types of pro-
cesses: MQC (i.e., coherent tunneling) and MQT (i.e.,

incoherent tunneling). In the case of MQC, the system in
question performs coherent NH3-type oscillations between
two degenerate wells separated by a classically impene-
trable barrier. Tunneling between neighboring degener-
ate vacua can be described by the instanton configuration
with nonzero topological charge and leads to a level split-
ting of the ground states. The tunneling removes the de-
generacy of the original ground states, and the true ground
state is a superposition of the previous degenerate ground
states. For the case of MQT, the system escapes from a
metastable potential well into a continuum by quantum
tunneling at sufficiently low temperatures, and the tun-
neling results in an imaginary part of the energy which
is dominated by the so-called bounce configuration with
zero topological charge [37,46]. As emphasized by Leggett,
the two phenomena of MQC and MQT are physically very
different, particularly from the viewpoint of experimental
feasibility [31]. MQC is a far more delicate phenomenon
than MQT, as it is much more easily destroyed by an
environment [47], and by very small c-number symme-
try breaking fields that spoil the degeneracy. The mag-
netic MQC should show up in resonance measurement of
both the magnetic noise and the magnetic susceptibility
spectra [19]. Awschalom and co-workers have performed
measurements both of the frequency-dependent magnetic
susceptibility χ(ω) and the magnetic noise S(ω) of fer-
ritin proteins by applying a fully integrated thin-film dc
SQUID susceptometer. The key observation is that a well-
defined resonance does appear below roughly 200 mK both
in S(ω) and in the imaginary part, χ′′(ω), of χ(ω). This
resonance can be interpreted as the tunneling level split-
ting between two macroscopic states of the ferritin par-
ticles, namely, the Néel vector pointing up and pointing
down. The sharpness of the resonance that Awschalom
et al. have observed indicates that dissipative coupling to
the environment is weak, which is one of the important
requirement for observing the phenomenon of MQC. The
behavior of the resonance as a function of temperature and
the magnetic field is consistent with theoretical expecta-
tions for the occurrence of MQC in single-domain anti-
ferromagnets, which provides strong support for MQC.
In the phenomenon of MQT, the change of magnetiza-
tion with time is expected to be able to be observed in
relaxation-type experiments [48] and compared with the-
oretical results. The key idea in the magnetic relaxation
experiment is to measure the long term magnetization
change of a magnetic system after changing the magnetic
field applied to it, in which the turning of magnetiza-
tion vectors is delayed for different time due to the dif-
ferent barriers separating the metastable states. Barbara
et al. and Tejada et al. have made comprehensive studies
of the low-temperature magnetic relaxation in different
systems (single-domain particles, magnetic grains, layers,
multilayers, and random magnets) [48]. The existence of
two relaxation regimes has been demonstrated in these
systems. At high temperatures, the magnetic viscosity
S ≡ (1/M0) (∂M/∂ ln (t)) is proportional to tempera-
ture in accordance with theoretical expectation for ther-
mally activated processes. At low temperatures, the vis-
cosity is independent of temperature, providing evidence
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to quantum tunneling of magnetization. The key obser-
vation is a nonthermal character of the relaxation below
a few kelvin, and the transition from the thermal to the
nonthermal relaxation regime is sharp. Qualitative agree-
ment between theory and experiment is found, which leads
to the consensus on the existence of MQT of magnetiza-
tion [48].

The classical solution of equation (9) with magne-
tocrystalline anisotropy equation (4) at zero magnetic field
is found to be

θ = π/2,

sinφ =
1

cosh (ω0τ)
· (23)

Correspondingly, the WKB exponent or the classical ac-
tion at zero magnetic field is obtained by integrating the
Euclidean action (2) with the above classical trajectory,

Scl(H = 0) = 23/2

√
K‖
J
S. (24)

From equation (20) it is easy to show that if S is a
half-integer, the tunneling rate of single-domain AFM
nanoparticles is suppressed to zero no matter whether the
excess spin s is an integer or half-integer. If S is an integer,
the tunneling rate is zero for the half-integer excess spin
AFM nanoparticle, but the rate is nonzero for the integer
excess spin one. This spin-parity effect is the result of ge-
ometric phase interference between topologically distinct
tunneling paths. Now the rate of quantum tunneling of
the Néel vector in nanometer-scale single-domain antifer-
romagnets at zero magnetic field is found to be

ΓAFM(H = 0) =
29/4

π1/2

V

~
K⊥

(
K‖J

K2
⊥

)3/4

× exp
(
−4

K‖
K⊥

)
S−1/2e−Scl(H=0), (25)

where the classical action at zero magnetic field is shown
in equation (24). The WKB exponent in equation (24) is
in good agreement with the result in reference [20]. There-
fore, the transition amplitude at zero magnetic field is

AAFM (H = 0) = exp (−~ω0T/2)

× exp (iΓAFM (H = 0)T/2)
S∑

m=0

(−1)mCm, (26)

for S and s are both integers.
It has been demonstrated that the tunneling rate is

suppressed to zero for a nanometer-scale single-domain
antiferromagnet with half-integer excess spin in the ab-
sence of the applied magnetic field, due to the destruc-
tive phase interference between topological different tun-
neling paths connecting the same initial and final states.
This destructive phase interference or topological quench-
ing effect for the single-domain AFM nanoparticle with

half-integer excess spin is related to a Kramers degener-
acy since the system has time-reversal invariance at zero
magnetic field. However, in real experiments one will al-
ways apply some weak magnetic field which removes the
Kramers degeneracy, and then detect the freezing of quan-
tum tunneling in the single-domain AFM nanoparticle
with half-integer excess spins. Therefore, the tunneling
behaviors of the Néel vector in the presence of a weak
applied magnetic field are essential to the experimental
observation of the destructive phase interference or topo-
logical quenching effect in nanometer-scale single-domain
antiferromagnets with half-integer excess spins. However,
in a system of a large number of single-domain parti-
cles, one would expect satistically equal numbers of in-
teger and half-integer spins. If all moments of the par-
ticles are initially magnetized in one direction and then
the field is switched off, the freezing effect should reveal
itself in a longer magnetic relaxation for the half-integer
spin particles. Therefore, the time dependence of the re-
laxation should show a fast drop of the magnetic mo-
ment of the system to one-half of the initial value and
then slow relaxation to zero [29]. To observe this effect,
one must have a very narrow distribution of particle sizes
and magnetic properties, otherwise the broad distribu-
tion of individual lifetimes will smear the relaxation. How-
ever, unlike most ensembles of magnetic clusters, a macro-
scopic sample of molecular magnets (such as Mn12ac [41],
or Fe8 [42,43]) consists of a large (Avogadro’s) number
of identical particles with the same magnetic properties
and identical characteristic energies, allowing much more
accurate comparisons with theory to be made. Now we
consider the limiting case that H/Hc → 0. The classi-
cal solution of equation (9) with the magnetocrystalline
anisotropy equation (4) in the weak field limit is found
to be

θ = π/2,

sinφ =
1

cosh (ω1τ)
, (27)

where ω1 = (V/~S)
√

2K‖J (1−H/2Hc). The corre-
sponding classical action can be evaluated by integrating
the Euclidean action (2) with the above classical trajecto-
ries, and the result is

Scl(H/Hc → 0) = 23/2

√
K‖
J

[
1− 1

2

(
H

Hc

)]
S. (28)

For the present case, φ2 is very close to π. Introducing
φ2 = π − δ, where δ = 2

√
H/Hc, we obtain the WKB

rates for resonant quantum tunneling of the Néel vector
between nonequivalent magnetic wells for the weak field
limit by applying the formulas in reference [24],

ΓAFM =
29/4

π1/2

V

~
K⊥

�
K‖J

K2
⊥

�3/4 �
1−

�
5

4
− 1

2

K‖
K⊥

��
H

Hc

��

× exp

(
−4

�
K‖
K⊥

�
×
�
1−

�
1− K‖

K⊥

��
H

Hc

��)

× S−1/2e−Scl(H/Hc→0), (29)
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where the classical action in the weak field limit is shown
in equation (27). Therefore, the transition amplitude at
weak field limit is found to be

AAFM = exp (−~ω1T/2) exp (iΓAFMT/2)

×



cos [(S − s) δ]
∑S
m=0Cm cos (mδ) ,

S, s = integer,

sin [(S − s) δ]
∑S
m=0Cm cos (mδ) ,

S = integer, s = half-integer,

sin [(S − s) δ]
∑S−1/2
m=0 Cm sin [(m+ 1/2) δ] ,

S = half-integer, s = integer,

cos [(S − s) δ]
∑S−1/2
m=0 Cm sin [(m+ 1/2) δ] ,

S, s = half-integer,
(30)

To summarize, we have investigated the topologi-
cal phase interference or spin-parity effects in resonant
quantum tunneling of the Néel vector in nanometer-
scale single-domain antiferromagnets between nonequiv-
alent wells formed by the external magnetic field
applied along the easy anisotropy axis of the system, op-
posite to the direction of the Néel vector, based on the
two-sublattice model. Both the WKB exponent and the
preexponential factors in the instanton’s contribution to
the rate of quantum tunneling of the Néel vector are ob-
tained exactly for the entire region of the external mag-
netic field (0 ≤ H < Hc) by applying the standard in-
stanton technique in the spin-coherent-state path-integral
representation, which should be useful for a quantitative
understanding of further experiments on the topological
phase interference effects in resonant quantum tunneling
of the Néel vector between nonequivalent magnetic wells
in single-domain AFM nanoparticles. The WKB exponent
at zero magnetic field is consistent with the result in refer-
ence [20], and the suppression of resonant quantum tunnel-
ing of the Néel vector by destructive interfering topologi-
cal phase terms in the Euclidean action is evident for the
single-domain AFM nanoparticle with half-integer excess
spins. Another important observation is that the WKB
rates of quantum tunneling of the Néel vector for both in-
teger and half-integer excess spins oscillate with the exter-
nal magnetic field applied along the easy anisotropy axis
of the system. And the oscillation of WKB rate with the
applied field for half-integer excess spins is found to be
significantly different from that for integer excess spins,
resulting from the geometric phase interference between
topologically distinct tunneling paths connecting the same
initial and final states. Note that these quantum phase in-
terference effects are of topological origin, and therefore
are independent of the magnitude of the excess spin of
the single-domain AFM nanoparticle. The tunneling be-
haviors in resonant quantum transition of the magnetiza-
tion vector between nonequivalent magnetic wells are also
obtained for the nanometer-scale single-domain ferromag-
nets with biaxial crystal symmetry in the presence of the
external magnetic field applied along the easy anisotropy

axis by making use of the similar technique as that for
the nanometer-scale single-domain antiferromagnets, but
in the large noncompensation limit.

At the end of this paper, we discuss the experimen-
tal condition of the external applied magnetic field for
observing the destructive phase interference or topolog-
ical quenching effect in single-domain AFM nanoparti-
cles with half-integer excess spins. For AFM nanoparti-
cles with half-integer excess spins in the absence of an
external applied magnetic field, it has been theoretically
demonstrated that there is no resonant quantum tunneling
taking place between two energy minima of the system,
resulting from the destructive interference of the Berry
phase or the Wess-Zumino, Chern-Simons term in the Eu-
clidean action between the topologically different tunnel-
ing paths of the clockwise (∆φ = −π) and the counter-
clockwise (∆φ = π) instantons. Such destructive phase in-
terference or topological quenching effect for half-integer
excess spins is related to the Kramers’ degeneracy due
to the time-reversal invariance of the system in the ab-
sence of an external applied magnetic field. Therefore, the
ground state is a Kramers doublet so long as the excess
spin of the single-domain AFM nanoparticle is a half-
integer, which, according to the Kramers’ theorem, leads
to the absence of resonant quantum tunneling of the Néel
vector between energetically degenerate easy directions.
However, in real experiments, in order to detect the freez-
ing of resonant quantum tunneling of the Néel vector for
the single-domain AFM nanoparticle with half-integer ex-
cess spins, one will always apply a weak magnetic field to
remove the Kramers’ degeneracy. This field satisfies the
condition that the Zeeman energy splitting must be much
smaller than the energy level difference, ∆E = ~ω0, in one
of the magnetic wells at zero field, which means that

H � V

~γ
1
Ss

√
2K‖J. (31)

i.e., the traces of topological quenching effect will be de-
stroyed when the field is large enough to make the ground
state in one well degenerate with the first excited state in
the other well.

Typical values of the parameters for the exchange en-
ergy density between two sublattices and the longitu-
dinal anisotropy coefficient for the single-domain AFM
nanoparticle are J ∼ 1010 erg/cm3 andK‖ ∼ 105 erg/cm3.
The radius of the single-domain AFM nanoparticle is
about 5 nm. The number of spins in one sublattice is
about 103 and the number of excess spins in the single-
domain AFM nanoparticle due to the small noncompen-
sation of two sublattices is about 10. Substituting these
values into equation (27), we suggest that H ∼ 100 Oe
to observe the destructive phase interference or topologi-
cal quenching effect for single-domain AFM nanoparticles
with half-integer excess spins in experiments. This condi-
tion will be easier to be satisfied in the single-domain AFM
nanoparticle than in the single-domain FM nanoparticle
of a comparable size [34]. It is noted that all calculations
performed in this paper are based on the two-sublattice
model for single-domain AFM particles. We find that
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Hc ≈ 1.13× 106 Oe, and Hs.f. = 1.53× 106 Oe for typical
values of parameters for nanometer-scale single-domain
antiferromagnets. Therefore, the coercive field is smaller
than the spin-flop field, at which the two-sublattice con-
figuration is valid for single-domain AFM nanoparticles at
finite magnetic field.

Recent experiments have rekindled interest in the field
of quantum tunneling of magnetization. Most notable has
been the discovery of resonant quantum tunneling between
spin states in the systems of spin-10 molecules such as a
dodecanuclear mixed-valence maganese-oxo cluster with
acetate ligands of formula

[Mn12O12 (CH3COO)16 (H2O)4]
· 2CH3COOH · 4H2O,Mn12ac [41],

and an octanuclear iron(III) oxo-hydroxo cluster of for-
mula [Fe8O2 (OH)12 (tacn)6]8+, Fe8 [42,43], where tacn
is the organic ligand triazacyclononane. At low temper-
atures the magnetization in these systems are found to
relax significantly faster at particular values of magnetic
field that correspond to resonance between spin states.
More recently, Wernsdorfer and Sessoli have measured the
tunneling splittings on the order of 10−8 K in the molecu-
lar Fe8 clusters with the help of an array of micro-SQUIDs
with a very high sensitivity [40]. They have found a very
clear oscillation in the tunneling splittings, which is di-
rect evidence of the role of the topological spin phase
(Berry phase) in the spin dynamics of these molecules. It
is noted that the theoretical results presented in this pa-
per are based on the standard instanton technique in the
spin-coherent-state path-integral representation, which is
semiclassical in nature, i.e., valid for large spins and in the
continuum limit. Whether the instanton technique can be
applied in studying the spin dynamics in magnetic molecu-
lar clusters with S = 10 (such as Fe8) is an open question.
Work is now in progress to investigate the spin-parity or
topological phase interference effects in resonant quantum
tunneling of magnetization in magnetic molecular clusters.

Various dissipative effects caused by the interactions
with the environment such as phonons [44], nuclear
spins [45], and Stoner excitations and eddy currents in
metallic magnets [15] are important in macroscopic quan-
tum tunneling of magnetism. The most important is, how-
ever, the interaction between spins of the magnets and
spins of the environment, since the change of a single
1/2 spin would transform the constructive interference to
destructive or vice versa. Loss et al. [49] discussed the
spin-parity effect in the presence of dissipation by apply-
ing three different techniques, due to Feynman and Ver-
non [50–52], Caldeira and Leggett [2], and Franck and
Condon [53]. They found that the Feynman-Vernon cal-
culation indicates that the spin-parity effect is reduced by
dissipation, that is, coupling to the environment does pro-
duce tunneling for half-integer spins. On the other hand,
the Caldeira-Leggett and Franck-Condon computations
predict the absence of any tunnel splitting of the ground-
state for half-integer spins, i.e., the spin-parity can be said
to survive coupling to the environment. So the actual sit-
uation is more complicated and work along this line is still

in progress. We hope that the theoretical results obtained
in the present work will stimulate more experiments whose
aim is observing the topological phase interference or spin-
parity effects in resonant quantum tunneling of the Néel
vector in nanometer-scale single-domain antiferromagnets.
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Appendix A: Evaluation of the preexponential
factors in WKB tunneling rate

In this appendix, we review briefly the procedure on how
to calculate the preexponential factors in the WKB rate
of quantum tunneling of the Néel vector in single-domain
AFM nanoparticles, based on the two-sublattice model
and the standard instanton technique in the spin-coherent-
state path-integral representation [11,24,35–37]. The pre-
exponential factors in WKB tunneling rate are due to the
quantum fluctuations about the classical path, which can
be evaluated by expanding the Euclidean action to second
order in small fluctuations. Then we apply this approach
to obtain the instanton’s contribution to the tunneling
rates for resonant quantum transition of the Néel vector
between nonequivalent magnetic wells in single-domain
AFM nanoparticles with biaxial crystal symmetry in the
presence of an external magnetic field applied along the
easy anisotropy axis.

In reference [24], Lü et al. have studied the general
formulas for evaluating both the WKB exponent and the
preexponential factors in the tunneling rate (MQT) or
the tunneling level splitting (MQC) for the single-domain
AFM nanoparticles based on the two-sublattice model and
the standard instanton technique in the spin-coherent-
state path-integral representation, without assuming a
specific form of the magnetocrystalline anisotropy and the
external applied magnetic field. Here we explain briefly
the basic idea of this calculation. Such a calculation con-
sists of two major steps. The first step is to find the
classical, or least-action path (instanton) from the clas-
sical equations of motion for the Néel vector in single-
domain AFM nanoparticles, which gives the exponent or
the classical action in the WKB tunneling rate. Instantons
in one-dimensional field theory can be viewed as pseu-
doparticles with trajectories existing in the energy bar-
rier, and are therefore responsible for quantum tunnel-
ing. The second step is to expand the Euclidean action
to second order in the small fluctuations about the clas-
sical path, and then evaluate the Van Vleck determinant
of resulting quadratic form [24,35–37]. For single-domain
AFM nanoparticles, writing θ (τ) = θ (τ) + θ1 (τ) and
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φ (τ) = φ (τ) + φ1 (τ), where θ and φ denote the classi-
cal path, one obtains the Euclidean action of equation (2)
as SE [θ (τ) , φ (τ)] ≈ Scl + δ2S with Scl being the classical
action or the WKB exponent and δ2S being a functional
of small fluctuations θ1 and φ1 [24],

δ2S =
V

~

∫
dτ

[
χ⊥
2γ2

(
dθ1

dτ

)2

+
χ⊥
2γ2

sin2 θ

(
dφ1

dτ

)2

+
χ⊥
γ2

sin
(
2θ
)(dφ

dτ

)(
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dτ

)
θ1 +
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2γ2

cos
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)2
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+
1
2
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2
1 + 2Eθφθ1φ1 +Eφφφ

2
1

)]
, (A.1)

where

Eθθ =
(
∂2E/∂θ2

)
θ=θ,φ=φ

, Eθφ =
(
∂2E/∂θ∂φ

)
θ=θ,φ=φ

,

and Eφφ =
(
∂2E/∂φ2

)
θ=θ,φ=φ

.

Under the condition that

(1/2)Eθθ +
(
χ⊥/2γ2

) (
cos 2θ

) (
dφ/dτ

)2
> 0,

where Eθθ is evaluated at the classical path, the Gaussian
integration can be performed over θ1, and the remaining
φ1 path integral can be casted into the standard form
for a one-dimensional motion problem. As usual there ex-
ists a zero-mode, dφ/dτ , corresponding to a translation
of the center of the instanton, and a negative eigenvalue
in the MQT problem [24,35–37]. This leads to the imag-
inary part of the energy, which corresponds to the quan-
tum escaping rate from the metastable state through the
classically impenetrable barrier to a stable one. The reso-
nant tunneling splittings of the ground state for the MQC
problem of the Néel vector can be evaluated by applying
the similar technique [11,24,35–37]. What is need for the
calculation of the tunneling rate (in MQT) and the tun-
neling level splitting (in MQC) is the asymptotic relation
of the zero mode, dφ/dτ , for large τ [11,24,35–37],

dφ/dτ ≈ ae−µζ , as ζ →∞. (A.2)

The new time variable ζ in equation (A.2) is related to τ
as

dζ = dτ/2A
(
θ (τ) , φ (τ)

)
, (A.3)

where

A
�
θ, φ

�
= J

V

~

χ⊥
2γ2

sin2 θ

Eφφ
�
θ, φ

�
+ (χ⊥/γ2)

�
cos 2θ

� �
dφ/dτ

�2 ·

(A.4)

Then the instanton’s contribution to the tunneling rate
for MQT or the tunneling level splitting for MQC of the
Néel vector in single-domain AFM nanoparticles (with-
out the contribution of the topological phase term in the
Euclidean action) is given by [11,24,35–37]

|a| (µ/π)1/2 e−Scl . (A.5)

Therefore, all that is necessary is to differentiate the
classical path (instanton) to obtain dφ/dτ , then con-
vert from τ to the new time variable ζ according to
equations (A.3, A.4), and read off a and µ by compar-
ison with equation (A.2). If the condition (1/2)Eφφ +(
χ⊥/2γ2

) (
cos 2θ

) (
dφ/dτ

)2
> 0 is not satisfied, one can

always perform the Gaussian integration over φ1 and end
up with a one-dimensional path integral over θ1 [24].

Now we apply this approach to the single-domain AFM
nanoparticle with biaxial crystal symmetry in the pres-
ence of an external magnetic field applied along the easy
anisotropy axis, opposite to the direction of the Néel vec-
tor. After some algebra, we find that

1
2
Eθθ +

χ⊥
2γ2

cos 2θ̄
(

dφ̄
dτ

)2

= K⊥ − 2K‖ sin2 φ

− 2K‖

(
H

Hc

)(
1− 1

2
cosφ

)
= K⊥ +O(K‖), (A.6)

which is positive. So we can perform the Gaussian inte-
gration over θ1 directly. And after some complicated cal-
culations, we obtain the following relation between τ and
the new imaginary-time variable ζ for this MQT problem,

τ =
~S2

2K⊥V
1

1−
(
K‖
K⊥

)(
H
Hc

)ζ +
(
K‖
K⊥

)
1

1−
(
K‖
K⊥

)(
H
Hc

)
× 1
ω0

[
4
√
ε+ 3(1− ε) ln

(
1 +
√
ε

1−√ε

)]
· (A.7)

It is easy to differentiate the instanton solution to obtain

dφ̄
dτ

= 4
V

~S

√
2K‖J

ε√
1− ε

(
1 +
√
ε

1−√ε

)3

 
K‖
K⊥

!
( H
Hc )

1−
 
K‖
K⊥

!
( H
Hc )
√
ε

× exp

−4
(
K‖
K⊥

)
1

1−
(
K‖
K⊥

)(
H
Hc

)ε


× exp

[
−
√
K‖Jε

2K2
⊥

1

1− (K‖K⊥ )( HHc
)
Sζ

]
as ζ →∞.

(A.8)

Thus, reading off |a| and µ in equation (A.8), we obtain the
instanton’s contribution to the WKB tunneling rate shown
in equations (12, 13) for resonant quantum transition of
the Néel vector between nonequivalent wells formed by the
external magnetic field applied along the easy anisotropy
axis of the system, opposite to the direction of the Néel
vector.
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